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dP-FMEA: An innovative Failure Mode and Effects Analysis for distributed
manufacturing processes

Domenico A. Maisano, Fiorenzo Franceschini, and Dario Antonelli

DIGEP (Dept. of Management and Production Engineering), Politecnico di Torino, Torino, Italy

ABSTRACT
The Failure Mode and Effects Analysis (FMEA) is a powerful tool to design and maintain reli-
able systems (products, services or manufacturing processes), investigating their potential
failure modes from the threefold perspective of severity, occurrence and detection. The
Process FMEA, or more briefly P-FMEA, is a declination of the FMEA for manufacturing proc-
esses (or parts of them). Being progressively characterized by decentralized networks of
flexible manufacturing facilities, the current scenario significantly hampers the implementa-
tion of the traditional P-FMEA, which requires the joint work of a group of experts formulat-
ing collective judgments. This paper revises the traditional P-FMEA approach and integrates
it with the ZMII-technique – i.e. a recent aggregation technique based on the combination
of the Thurstone’s Law of Comparative Judgment and the Generalized Least Squares method
– allowing experts distributed through organizations to formulate their judgments individu-
ally. The revised approach – referred to as “distributed-Process FMEA” or more briefly
dP-FMEA – allows to manage a number of experts, without requiring them to physically
meet and formulate collective decisions, thus overcoming a relevant limitation of the trad-
itional P-FMEA. The dP-FMEA approach also includes a relatively versatile response mode
and overcomes several other limitations of the traditional approach, including but not lim-
ited to: (i) arbitrary formulation and aggregation of expert judgments, (ii) lack of consider-
ation of the dispersion of these judgments, and (iii) lack of estimation of the uncertainty of
results. The description is supported by a real-life application example concerning a plastic
injection-molding process.
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Introduction and literature review

The Failure Mode and Effects Analysis (FMEA) is a
very popular technique to improve the reliability of
products, services and manufacturing processes, by
analyzing failure scenarios before they have occurred
and preventing the occurrence of causes or mecha-
nisms of failures (Stamatis 2003; Tague 2005; Liu
et al. 2019a). When applied at the product/service
design stage, FMEA helps to achieve reliability while
reducing the amount of design corrections (Geramian,
Abraham, and Ahmadi Nozari 2019a); when applied
to manufacturing processes, FMEA is very useful to
improve reliability and safety and provides a useful
basis for planning the corresponding predictive main-
tenance (Johnson and Khan 2003).

The FMEA is generally carried out by a cross-
functional and multidisciplinary team of experts –
typically composed of engineers and technicians
specialized in design, testing, reliability, quality,

maintenance, manufacturing, safety, etc. – which is
coordinated by a team leader in various activities
(see the flowchart in Figure 1). Many of these activ-
ities must be carried out collectively by the experts,
trying to overcome conflicting situations and con-
verging toward a unanimous agreement. The major
collective activities are those concerned with the
prioritization of the so-called failure modes, based
on the Risk Priority Number (RPN), which is a com-
posite indicator given by the product of three so-
called risk factors: occurrence (O), severity (S), and
detection (D) (Yeh and Chen 2014). Each of these
risk factors is determined by collective judgment,
using a conventional ordinal scale from 1 to 10
(Stamatis 2003); see activities 7, 8 and 10 of the
flowchart in Figure 1. The failure modes with higher
RPNs are considered more critical and deserve pri-
ority for the implementation of risk mitigation
actions: since the resources available for corrective
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actions are limited, it is reasonable to concentrate
them where they are most needed, tolerating the
minor failure modes. This sort of criterion of econ-
omy/sustainability is represented by activities 12
and 13 in the flowchart in Figure 1; the feedback
loop related to activity 13 highlights the iterative
nature of the entire FMEA procedure.

The traditional method for prioritizing failure
modes shows important shortcomings, extensively
debated in the scientific literature (Franceschini and
Galetto 2001; Das Adhikary et al. 2014; Zhou et al.
2016; Certa et al. 2017; Huang et al. 2019; Liu 2019;
Liu et al. 2019b; Geramian et al. 2019b); including but
not limited to:

� Use of arbitrary reference tables for assigning 1-to-10
scores to the three risk factors S, O and D (AIAG
2019; Franceschini, Galetto, and Maisano 2019). As
an example, Table 1 contains evaluation criteria sug-
gested by the Automotive Industry Action Group
(AIAG 2019), in an endeavor to unify FMEA for
automotive manufacturing processes.

� S, O and D are arbitrarily considered as equally
important (Franceschini and Galetto 2001).

� Since S, O and D are evaluated using ordinal
scales, their product is not a meaningful measure
according to the Measurement Theory (Roberts
1979; Franceschini et al. 2019).

� The degree of (dis)agreement between the team
members in formulating collective judgments is
not taken into account.

From this point on, the attention will be focused on
the Process FMEA (or more briefly P-FMEA), i.e. a

declination of the FMEA approach for manufacturing
processes, which can be carried out both (1) at the
design stage, to consider potential failures prior to
launching production, and (2) at the operational stage,
to gradually improve the process reliability, in line with
the concept of continuous improvement (Indrawati and
Ridwansyah 2015).

It is particularly interesting and challenging to
assess the role of P-FMEA in the current globalized
scenario, which is increasingly characterized by dis-
tributed manufacturing processes, i.e. a form of decen-
tralized manufacturing based on a network of
geographically dispersed facilities that are supposed to
be flexible, reconfigurable and coordinated through
information technology (Matt, Rauch, and Dallasega
2015; Srai et al. 2016). The use of local resources for
customized products and the adoption of new produc-
tion technologies in a digitalized environment (e.g.,
additive manufacturing, collaborative robots, etc.)
make distributed manufacturing increasingly attractive
for potential sustainability gains.

Unfortunately, decentralized production in some
ways hampers the application of the traditional
P-FMEA, which requires the joint work of several
parties in formulating a number of collective judg-
ments. Although it was proven that the effectiveness
of the P-FMEA tends to improve for large groups of
experts (Guerrero and Bradley 2013), for decentral-
ized processes the number of experts in each facility
is generally small (e.g., five or less) (Liu et al., 2018,
2019a). The distinct application of P-FMEA to vari-
ous decentralized processes is therefore ineffective in
practice, being fragmented as well as unnecessar-
ily repetitive.

Figure 1. Flowchart showing the main stages of a FMEA (Stamatis 2003).
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In other practical situations, the P-FMEA is carried
out only by the experts of the dominant production
facility – e.g. the largest or the most central one – and
then imposed on the satellite facilities – e.g. those of
smaller size and/or more dispersed geographically.
This other practice does not fully exploit the technical
knowledge of the experts affiliated to the satellite
facilities, which instead could deserve to be shared.
The application of one-and-only-one P-FMEA involv-
ing the totality of the experts – although they are dis-
persed in a network of decentralized manufacturing
facilities – would be much more effective.

Despite the great relevance of this problem, few
existing studies focus on large-group decision making
in the FMEA context (Geramian et al. 2019a; Liu
et al. 2019b). The purpose of this paper is to revise
the traditional P-FMEA approach, making it effective
also for distributed manufacturing environments.
The revised approach – which will be referred to as

“distributed P-FMEA” or, more briefly, “dP-FMEA”
– replaces the collective judgments with the aggrega-
tion of individual judgments by experts, from the
perspective of each of the three risk factors S, O
and D.

The dP-FMEA approach is divided into two phases:

1. For each risk factor, expert judgments are fused
through a recent aggregation technique – called
ZMII – which combines the Thurstone’s Law of
Comparative Judgment (LCJ) and the Generalized
Least Squares (GLS) method (Thurstone 1927;
Kariya and Kurata 2004). The ZMII-technique can
be applied in a variety of other decision-making
contexts where experts make individual judgments
on certain objects of interest (Franceschini and
Maisano 2019).

2. Further aggregation of the analysis results
concerning S, O and D into a single composite

Table 1. Severity/occurrence/detection evaluation criteria for P-FMEA suggested by the Automotive Industry
Action Group (AIAG 2019).
Rating (S) Severity (O) Occurr. (D) Detection

10 May endanger (machine or assembly)
operator, without warning.

Very high (P � 10%) No current process control; failure mode
and/or cause cannot be detected

or prevented.

9 May endanger (machine or assembly)
operator, with warning.

High (P � 5%) Failure mode and/or cause is not easily
detected (e.g., random audits).

8 100% of product may have to be
scrapped; the production line may

be shut down.

High (P � 2%) Failure-mode detection post-processing
by operator through visual/tactile/audible

means.

7 Product may have to be sorted and a
portion (lower than 100%) scrapped;
the production line is operational

albeit at a reduced level of performance.

High (P � 1%) Failure-mode detection in-station by operator,
trough visual/tactile/audible means, or
post-processing, through use of attribute

gauging (go/no-go, manual torque
check/clicker wrench, etc.).

6 100% of the product may have to be
reworked off-line and then

accepted/rejected.

Moderate (P � 0.2%) Failure-mode detection post-processing by
operator, through use of variable gauging,
or in-station by operator, through use of

attribute gauging (go/no-go, manual torque
check/clicker wrench, etc.).

5 A portion (lower than 100%) of the
product may have to be reworked off-line

and then accepted/rejected.

Moderate (P � 0.05%) Failure-mode/cause detection in-station by
operator, trough variable gauging, or by

automated controls that will detect discrepant
part and notify operator (light, buzzer, etc.).
Gauging performed on setup and first-piece

check (for set-up causes only).

4 100% of product may have to be reworked
in-station before being processed.

Moderate (P � 0.01%) Failure-mode detection post-processing by
automated controls that will detect discrepant
part and lock part to prevent further processing.

3 A portion (lower than 100%) of product may
have to be reworked in-station before

being processed.

Low (P � 0.001%) Failure-mode detection in-station by automated
controls that will detect discrepant part and
automatically lock part in station to prevent

further processing.

2 Slight inconvenience to process, operation,
or operator.

Low (P� 0.0001%) Failure-cause detection in-station by automated
controls that will detect error and prevent

discrepant part from being made.
1 No discernible effect. Very low (P � 0) Failure-cause prevention as a result of fixture design,

machine design or part design. Discrepant parts
cannot be made because item has been
error-proofed by process/product design.
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indicator of criticality, with relative uncer-
tainty estimation.

The new approach also includes a relatively versa-
tile response mode based on the formulation of
(incomplete) rankings and overcomes other limita-
tions of the traditional P-FMEA, such as: (i) lack of
consideration of the variability of expert judgments,
(ii) arbitrary rating and questionable aggregation of
expert judgments, (iii) lack of estimation of the uncer-
tainty of results.

The remainder of the paper is organized into four
sections. The section “ZMII-technique” briefly recalls
and exemplifies the ZMII-technique, which will be
applied in the first phase of the dP-FMEA. The sec-
tion “Proposed methodology” illustrates the dP-FMEA
methodology; the description is supported by a real-
life case study concerning the processes of plastic
injection-molding, which are performed in several dis-
tributed manufacturing facilities of a worldwide com-
pany of thermal systems. The section “Conclusions”
summarizes the original contributions of this paper,
its practical implications, limitations and suggestions
for future research. Further details on the ZMII-tech-
nique and the dP-FMEA methodology are contained
in the Appendix section.

ZMII-technique

In general, the ZMII-technique can be used for any
group-decision problem in which a number of experts
express their individual judgments on certain objects,
based on the degree of a specific attribute
(Franceschini and Maisano 2019). This technique can
be seen as a black box transforming some specific
input data – i.e. expert judgments on the objects –
into some specific output data – i.e. ratio scaling of
the objects, with a relevant uncertainty estimation
(Franceschini et al. 2019). Precisely, for each (i-th)
object, the ZMII-technique produces an estimate of (1)
the (mean) ratio-scale value yi and (2) the correspond-
ing standard deviation ryi(Franceschini and Maisano
2019). The ZMII-technique includes three fundamental
phases, as summarized in the following three subsec-
tions. For details, see also the section “Detailed
description of the ZMII-technique” (in the Appendix).

Data collection

A prerequisite of the ZMII-technique is that each of
the experts involved in the problem formulates a
ranking of the objects – i.e. an ordered sequence

including the objects with the highest grade of the
attribute in the top positions and those with the low-
est grade of the attribute in the bottom ones.

Apart from the regular objects (e.g., f1 to f11 in the
case study), experts may also include two (fictitious)
dummy objects in their rankings: i.e. one (fZ) corre-
sponding to the absence of the attribute of interest,
and one (fM) corresponding to the maximum-imagin-
able degree of the attribute (Franceschini and Maisano
2019). When dealing with these dummy objects, two
important requirements should be considered:

� fZ should be positioned at the bottom of a ranking,
i.e. there should not be any other object with
degree of the attribute lower than fZ. In the case
the attribute of another object is judged to be
absent, that object will be considered indifferent to
fZ and positioned at the same hierarchical level.

� fM should be positioned at the top of a ranking, i.e.
there should not be any other object with degree
of the attribute higher than fM. In the case the
attribute of another object is judged to be the max-
imum imaginable, that object will be considered
indifferent to fM and positioned at the same hier-
archical level.

In the best cases, experts formulate complete rank-
ings, characterized by relationships of strict dominance
(e.g., “fi > fj”) or indifference (e.g., “fi � fj”) among
the possible pairs of objects. Unfortunately, the for-
mulation of these rankings may be problematic for
some experts, especially when the number of objects
is large (Harzing et al. 2009). To overcome this obs-
tacle, a flexible response mode that tolerates incom-
plete rankings is adopted. Below is a list of possible
types of incomplete rankings.

� Rankings including only the objects with the
higher degree of the attribute (or “t-objects”, where
“t” stands for “top”) and those with the lower
degree of the attribute (or “b-objects”, where “b”
stands for “bottom”); these rankings will be here-
after denominated “Type-t&b”. The t parameter,
which will be used below, is conventionally defined
as the number of regular objects (i.e., excluding
the two dummy objects) within the t-objects, while
the b parameter is conventionally defined as the
number of regular objects within b-objects. In the
example in Figure 2(a), t ¼ b¼ 2.

� Rankings including only the objects with the
higher degree of the attribute (i.e., t-objects)
among those available; see the example in Figure
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2(b), in which t¼ 2. From now on, these rankings
will be denominated “Type-t”.

� Type-t&b or Type-t rankings where t and b-objects
are not ordered. These rankings reflect an even
higher level of incompleteness, where experts sim-
ply indicate the t or b-objects of the ranking, with-
out necessarily ordering them.

� Rankings not including the two dummy objects
(fZ and fM), e.g. in the case experts find it difficult
to envisage them. The rankings that do not include
dummy objects but do include all regular ones will
hereafter be referred to as “quasi-complete”; see
the example in Figure 2(c).

� To contemplate the fact that experts may be unable
to evaluate certain (regular) objects – e.g. those
less familiar to them – they could formulate
(incomplete) rankings that intentionally exclude
some objects (see the example in Figure 2(d)). Of
course, there cannot be relationships of strict dom-
inance or indifference between the excluded objects
and those included in the expert rankings, but only
relationships of incomparability.

� Combining the previous three types of incomplete
rankings, one can obtain Type-t&b or Type-t rank-
ings that include or not the dummy objects and/or
with ordered or unordered t/b-objects.

Figure 2 also shows that a generic incomplete rank-
ing can be transformed into a “reconstructed” ranking,

including all the (dummy and regular) objects, with the
addition of appropriate incomparability relationships.
Borrowing the language of the Order Theory, the above
reconstructed rankings may be referred to as partial: in
addition to the relationships of strict dominance or
indifference, these rankings also include some relation-
ships of incomparability (e.g., “fi jj fj”) among the pos-
sible pairs of objects.

The use of these rankings may also favor reliability
of responses, since – in case of indecision – experts
are not necessarily forced to provide complete and
(illusorily) precise responses (Lagerspetz 2016;
Franceschini and Maisano 2019). In general, the
choice to provide more or less complete rankings may
depend on several risk factors that affect experts, such
as availability of time, level of education, willingness
to collaborate, degree of experience, technical know-
ledge, etc. To further improve the reliability of the
data collected, it is possible to use common online
procedures to support the generation of rankings,
such as those briefly described below (Fabbris 2013).

� Numerical assignment. In this technique, the
respondent (expert) associates each object with a
relevance order number, using a numerical drop-
down box. The order of relevance of the objects
and a respective ranking are then reconstructed.

� Fixed total partitioning. A respondent is assigned a
fixed budget – say 100 points – and is asked to

Figure 2. Example of different types of incomplete rankings. Incomplete rankings can be turned into “reconstructed” (partial) rank-
ings, including all the objects; reconstructed parts are marked in red.
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partition it over the objects, according to some
attribute. This support technique is generally
applied through a computer-assisted interviewing
system that makes it possible to check the sum of
points spent after each assignment (Conrad et al.
2005). Next, the ordinal hierarchies between the
objects can be transformed into a ranking.

� Drag and drop interface. In this type of online sup-
porting approach, respondents can drag and drop
the objects to re-order them as they choose. This
approach is interactive and helps the respondents
to construct a ranking in a practical and intui-
tive way.

� Picking the best/worst object. Each respondent may
be asked to pick the most relevant object and, in
case, the least relevant one. Respondents are some-
times asked to pick k objects as the most/least rele-
vant ones and – in some instances – to construct
an order of this subset of objects. Once the most/
less relevant objects have been isolated, the proced-
ure could be iterated to the remaining objects.

In our case study, the latest support technique was
mainly used, allowing experts to formulate complete/
incomplete rankings, depending on their level of con-
fidence and without forcing them to make uncer-
tain judgments.

Data processing and solution

The mathematical formalization of the problem relies on
the postulates and simplifying assumptions of the Law of
Comparative Judgment (LCJ) by Thurstone (1927), who
postulated the existence of a psychological/psychophysical
continuum, in which objects are positioned depending on
the degree of a certain attribute. The position of a generic
i-th object (fi) is postulated to be distributed normally, in
order to reflect the intrinsic expert-to-expert variability: fi
� N(xi, r2xi), where xi and r2xi are the unknown mean
value and variance related to the degree of the attribute
of that object. Considering two generic objects, fi and fj,
and having introduced further simplifying hypotheses
(see the section “Mathematical formulation of the prob-
lem”, in the Appendix), it can be asserted that
(Thurstone 1927):

pij ¼ P½ðfi–fjÞ > 0� ¼ 1 –U½�ðxi–xjÞ�, (1)

which expresses the probability (pij) that the position
of fi is higher than that of fj, U being the cumulative
distribution function of the standard normal distribu-
tion z � N(0, 1).

Although pij is unknown, it can be estimated using the
information contained in a set of judgments expressed by

a number (m) of experts. The section “Mathematical for-
mulation of the problem” (in the Appendix) explains
how to estimate the pij values based on the positioning of
the objects in the (reconstructed) rankings of experts
(Franceschini and Maisano 2019).

Extending the reasoning to all possible pairs of
objects, an over-determined system of equations (like
the equation in Eq. [1]) can be obtained (Thurstone
1927). Then, this system can be solved by applying
the Generalized Least Squares (GLS) method (Kariya
and Kurata 2004), which allows to obtain an estimate
of the mean degree of the attribute of each object:
X ¼ [… , xi, … ]T, expressed on an arbitrary interval
scale with a relevant dispersion estimation (in the
form of the standard deviations: rxi8i). For details, see
the section “Initial scaling” in the Appendix.

Transformation on a 0-to-10 scale

Through the following transformation, the scale value
of a generic i-th object (xi) is transformed into a new
scale value (yi), which is defined in the conventional
range [0, 10]:

Y ¼ YðXÞ ¼ ½:::, yiðXÞ, :::�T ¼ :::, 10 � xi � xZ
xM � xZ

, :::

� �T
,

(2)
where: xZ and xM are the scale values of fZ and fM in
the initial interval scale; xi is the scale value of a gen-
eric i-th object in the initial interval scale; yi is the
scale value of a generic i-th object in the new scale
(Franceschini and Maisano 2019). Since scale y
“inherits” the interval property from scale x and has a
conventional zero point that corresponds to the
absence of the attribute (i.e., yZ ¼ 0), it can be reason-
ably considered as a ratio scale, without any conceptu-
ally prohibited “promotion” (Franceschini et al. 2019).
The section “Transformation of the initial scaling into
the final one” (in the Appendix) illustrates how to
determine the standard deviations (ryi) of the yi val-
ues, by “propagating” the uncertainty of the xi values.

Proposed methodology

This section outlines the proposed methodology; the
description will be followed by a practical application
to a case study. Finally, we will make a preliminary
comparison with the results deriving from the applica-
tion of a traditional P-FMEA.

Data collection and processing

Considering a generic P-FMEA, we can identify three
separate decision-making problems in which:
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� experts (e1, e2, … ) are the engineers/technicians
affiliated to different manufacturing plants of a
company/organization of interest;

� objects (f1, f2, … ) are the failure mode-cause com-
binations identified in the initial stages of the ana-
lysis; for the sake of simplicity, these objects will
be hereafter referred to as “failure modes”.

� attributes are respectively the risk factors: S for the
first problem, O for the second problem, and D for
the third problem.

For each of the three risk factors (S, O and D), each
expert formulates his/her own three distinct (subjective)
rankings of the failure modes. In line with what is
explained in the “Data collection” section, these rankings
may be incomplete and – in addition to the regular failure
modes – they may include two dummy failure modes:

fZ corresponding to a fictitious failure mode of
absent severity/occurrence/detection (e.g., a failure
mode associated with the rating S¼ 1/O¼ 1/D¼ 1,
according to the traditional FMEA reference tables,
such as those in Table 1);

fM corresponding to a fictitious failure mode of the
maximum-imaginable severity/occurrence/detection
(e.g., a failure mode associated with the rating S¼ 10/
O¼ 10/D¼ 10, according to the traditional P-FMEA
reference tables, such as those in Table 1).

The rankings related to each risk factor are then
aggregated through the application of the ZMII-technique
(see the section “ZMII-technique”), resulting into a ratio
scaling with a corresponding uncertainty estimation
(Franceschini and Maisano 2019). For the risk factors S,
O and D, the resulting scale values related to a generic
i-th failure mode will be conventionally referred to as Si,
Oi and Di; the respective standard deviations will be
referred to as rSi , rOi and rDi : An important difference
between the proposed methodology and the traditional P-
FMEA is that for the former Si, Oi, Di2 ½1, 10�, while
for the latter they 2 ½0, 10�:

Aggregation of the three risk factors

For a generic (i-th) failure mode, the aggregation of
the scale values related to the three risk factors can be
performed through the classic multiplicative model
(Stamatis 2003; Franceschini et al. 2019):

RPNi ¼ Si � Oi � Di: (3)

This model implicitly assumes that the three risk fac-
tors are equally important. The section “Weighted addi-
tive aggregation model” (in the Appendix) presents an
alternative (weighed) additive aggregation model, in
which the three risk factors of interest are not necessarily

equally important. In addition, it contains a sensitivity
analysis aimed at showing the robustness of the alterna-
tive model, with respect to small variations in
the weights.

Since the Si, Oi and Di values are defined on ratio
scales, their product is a permissible operation; on the
other hand, we remark that the traditional procedure
unduly aggregates quantities defined on ordinal scales
(Franceschini et al. 2019).

Uncertainty calculation

The uncertainty related to the RPNi values can be
determined by applying the so-called delta method,
also referred to as law of propagation of uncertainty or
error transmission formula (JCGM 100:2008 2008). It
is thus obtained:

rRPNi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðOi �DiÞ2 �r2Si þðSi �DiÞ2 �r2Oi

þðSi �OiÞ2 �r2Di

q
,

(4)

where rSi , rOi and rDi are the standard deviations
associated with the Si, Oi and the Di values, for the
i-th failure mode. The formula in Eq. [4] implicitly
neglects the contributions of the correlations between
the Si, Oi and Di values. This assumption seems rea-
sonable, considering that the above values derive from
three distinct scaling processes.

Assuming that the RPNi values are approximately
normally distributed, a 95% confidence interval related
to each RPNi value can be computed as:

RPNi 6URPNi ¼ RPNi62 � rRPNi 8i, (5)

URPNi being the expanded uncertainty (JCGM
100:2008 2008) of RPNi, with a coverage factor k¼ 2.

The section “Weighted additive aggregation model”
(in the Appendix) shows a similar uncertainty calcula-
tion for a (weighted) additive aggregation model.

Case study

An important worldwide supplier of thermal systems –
which is kept anonymous for reasons of confidentiality
– operates predominantly in the automotive sector. This
company not only assembles electric compressors, heat-
ing-ventilating-and-air-conditioning (HVAC) units,
radiators, etc., but also manufactures most of the corre-
sponding components in-house. The focus of this case
study is on the production of plastic pipes by injection
molding. Figure 3 schematically illustrates (a) the main
phases of this process, (b) the typical components man-
ufactured for thermal systems, and (c) the structure of a
generic injection-molding press.
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In Europe, the company of interest carries out this
manufacturing process in four different plants located
in four countries (i.e., Germany, Italy, Czech Republic
and Spain), as illustrated in Figure 4. The equipment
used in the various plants is almost equivalent, as are
the types of components manufactured; it is therefore
reasonable to expect that equivalent injection-molding
processes are likely to be subject to the same failures.
Following this reasoning, it would seem appropriate
to share the experience accumulated in the various
production facilities, in order to improve all processes
in a comprehensive manner.

The above four processes are managed by twenty
engineers/technicians overall, hereinafter referred to as
“experts” (i.e., respectively seven for the German

process, five for the Italian one, four for the Czech
one and four for Spanish one, as shown in Figure 4).
Given the great difficulty in bringing together all the
experts and making them interact to reach shared
decisions, the traditional P-FMEA approach would be
extremely difficult to manage, especially for activities
7, 8 and 10 in Figure 1, which concern the formula-
tion of collective judgments.

The initial activities of data collection, process
description/analysis and determination of failures can
be carried out quite easily. These activities are coordi-
nated by a team leader (i.e., expert e1, affiliated to
process 1), who collects information and technical
data from other experts, processing and organizing
them appropriately (i.e., activities 1 to 6 and 9 in

Figure 3. Plastic injection-molding process: (a) basic process steps, (b) example of finished components for thermal systems, and
(c) scheme of a typical injection-molding press.
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Figure 4. Scheme of the four European injection-molding processes of the company of interest, with the corresponding engi-
neers/technicians, referred to as “experts”, e1 to e20.

Figure 5. Simplified P-FMEA table related to a plastic injection-molding process.

Table 2. Failure mode-cause combinations that will be prioritized according to the risk factors S, O, and D.
Abbrev. Failure mode Failure cause

f1 A.1 – Incorrect material A.1.1 – Error by the operator
f2 Ibidem A.1.2 – Incorrect material tag
f3 A.2 – Wet material A.2.1 – Malfunction of the dryer
f4 B.1 – Incorrect temperature of some parts of the mold B.1.1 – Malfunction of the temperature-control system of the screw
f5 Ibidem B.1.2 – Malfunction of the temperature-control system of the barrel
f6 C.1 – Inadequate pressure C.1.1 – Incorrect setting of pressure parameters
f7 C.2 – Exaggerated injection speed C.2.1 – Incorrect setting of speed parameters
f8 D.1 – Half molds are not in perfect contact D.1.1 – Insufficient force of the clamping cylinder
f9 Ibidem D.1.2 – Deformation of the half-mold pins
f10 E.1 – Malfunction of the ejection system E.1.1 – Insufficient draft angles
f11 Ibidem E.1.2 – The moving part of the mold is blocked by the workpiece
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Figure 1). The results of the initial activities are sum-
marized (in a simplified way) in the P-FMEA table in
Figure 5, in which seven failure modes (A.1, A.2, B.1,

etc.) and eleven relevant failure causes (A.1.1, A.1.2,
A.2.1, etc.) have been determined. Table 2 shows the
resulting failure mode-cause combinations (f1 to f11),

Figure 6. (Incomplete) rankings of failure modes, formulated by the experts for each of the three risk factors. Referring to the
rankings in the last column, the failure modes identified directly by the experts are marked in black, while the reconstructed parts
are marked in red.
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which should be prioritized according to the three
risk factors.

The parts concerning the collective assignment of
the S, O and D scores and the aggregation of the
aforesaid scores through RPN have been intentionally
left incomplete. These parts will be completed using
the new dP-FMEA approach, which replaces collective
expert judgments with the aggregation of individ-
ual judgments.

The rankings formulated by the experts are shown
in Figure 6. It can be noted that most of the experts
have opted for the formulation of incomplete rank-
ings, since they are simpler and faster. For each rank-
ing, it is specified: (i) the ranking type (complete,
quasi-complete, Type-t&b or Type-t), (ii) whether or
not the two dummy failure modes have been included
by the expert (“Manage fZ/fM?”), (iii) the value of the
parameters t and b, in the case of Type-t&b and
Type-t rankings, and (iv) if the t/b-objects are ordered
or not. Figure 6 also shows that rankings related to
the same risk factor can be very different from each
other, denoting a certain inter-expert disagreement.
For instance, while the majority of experts included
the object f8 among the top positions of their O-rank-
ings, other experts – such as e8, e10 and e12 – excluded
it from the top positions. This makes us reflect on the
actual difficulty of experts to converge toward collect-
ive judgments in the traditional P-FMEA; in addition,
the opinion of younger and less experienced experts
may not infrequently be inhibited/conditioned by that
of senior experts. Being based on the formulation of
individual judgments, the proposed response mode
will avoid this.

The rankings related to each risk factor are then
aggregated through the application of the ZMII-tech-
nique; results are reported in the first seven columns
of Table 3.

Next, the RPNi values of the failure modes and the
respective uncertainties are determined by applying
Eqs. [3], [4] and [5]; these results are contained in the
last three columns of Table 3. It can be noticed that
the expanded-uncertainty values of the failure modes
are relatively large, due to the uncertainty propaga-
tion. The most critical failure modes – i.e. those
deserving more attention when planning possible cor-
rective actions – are those with higher RPNi values
(see also the Pareto chart in Figure 7).

The relatively wide uncertainty bands indicate that
the RPNi alone is a “myopic” indicator, since it may
perform differentiations that are unfounded from a
statistical point of view. For instance, while it makes
sense to say that f8 is certainly more critical than f2 or

f6 (being the uncertainty band of the former not
superimposed on those of the latter two), it can not
necessarily be said that f2 deserves priority over f6
(being the relevant uncertainty bands superimposed).

These considerations give the team a few more
degrees of freedom in the choice of corrective actions,
perhaps taking into account other external constraints
(such as cost, technical difficulty, time required, etc.).

Additionally, we note that failure modes with
higher RPNi values tend to have higher uncertainty.
This sort of heteroschedasticity depends on the

Table 3. Results of the application of the proposed method-
ology to the case study, in terms of mean and standard devi-
ation of the Si, Oi, Di values and corresponding RPNi values.

Si values Oi values Di values RPNi values

Mean St.dev. Mean St.dev. Mean St.dev. Mean St.dev. URPNi ¼ 2 � rRPNi

f1 7.69 0.51 2.03 0.60 3.01 0.55 46.9 16.5 33.0
f2 6.91 0.51 2.23 0.58 5.19 0.51 79.9 22.9 45.8
f3 4.88 0.52 2.69 0.55 7.46 0.55 98.0 23.8 47.6
f4 5.60 0.53 4.14 0.51 4.48 0.52 103.8 20.1 40.2
f5 5.80 0.52 8.06 0.56 4.14 0.54 193.7 33.4 66.8
f6 2.71 0.61 4.57 0.52 4.82 0.51 59.5 16.3 32.6
f7 3.76 0.54 4.05 0.54 3.05 0.56 46.4 12.4 24.8
f8 5.08 0.54 6.93 0.56 5.54 0.52 195.1 31.7 63.4
f9 5.96 0.52 4.26 0.54 4.23 0.51 107.1 20.9 41.8
f10 3.36 0.55 5.74 0.52 4.03 0.53 77.7 17.8 35.6
f11 2.09 0.66 5.27 0.52 3.29 0.55 36.3 13.5 27.0

Figure 7. Pareto chart of the failure modes based on their
RPNi values and relevant expanded-uncertainty (URPNi ) bands
(data in Table 3).

Table 4. Si, Oi and Di-scores from the implementation of the
traditional P-FMEA to the case study. Subsequently, the above
scores are aggregated in the RPNi values (last column), using
the multiplicative model of Eq. [3].

Si Oi Di RPNi
f1 7.69 2.03 3.01 46.9
f2 6.91 2.23 5.19 79.9
f3 4.88 2.69 7.46 98.0
f4 5.60 4.14 4.48 103.8
f5 5.80 8.06 4.14 193.7
f6 2.71 4.57 4.82 59.5
f7 3.76 4.05 3.05 46.4
f8 5.08 6.93 5.54 195.1
f9 5.96 4.26 4.23 107.1
f10 3.36 5.74 4.03 77.7
f11 2.09 5.27 3.29 36.3
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multiplicative aggregation model of S, O and D (Eq.
[3]) (Ross 2014). Another limitation of this aggregative
model is that it does not allow to weigh the contribu-
tions of S, O and D, which are actually considered as
equally important. The section “Weighted additive
aggregation model” (in the Appendix) exemplifies the
application of a (weighted) additive aggregation model,
showing the results with their respective uncertainty.

After prioritizing failure modes, P-FMEA continues
with the iterative definition and implementation of cor-
rective actions, as illustrated in Figure 1. Like a trad-
itional P-FMEA, this activity requires the coordination
of the team leader who interacts with individual experts.

Comparison with traditional P-FMEA

As a further verification of the validity of the results
provided by the proposed technique, this section con-
tains a preliminary comparison with the results deriv-
ing from a traditional P-FMEA. To do this, we
reconsidered the case study, asking the experts to col-
lectively assign S, O and D scores to each combination
of failure mode-cause, in line with the traditional
P-FMEA procedure (phases 7, 8 and 10 of the flow-
chart in Figure 1). Unfortunately, due to the great dif-
ficulty in bringing together and coordinating a large
number of experts affiliated in different and often
remote production facilities, it was possible to bring
together concurrently only four out of these twenty
experts(!): e1, e2, e8 and e16. Despite its small size, this
subset of experts consists of engineers with relatively
high experience, who are responsible for guiding and
coordinating manufacturing activities in three differ-
ent European plants (see Figure 4). Therefore, this
subset can be considered as sufficiently representative
of all experts.

Table 4 contains the Si, Oi and Di-scores collect-
ively assigned to the eleven failure modes (f1 to f11, cf.
Table 2). Subsequently, for each (i-th) failure mode,
the corresponding scores were aggregated in the

composite indicator RPNi, according to the traditional
multiplicative model in Eq. [3]. We note that, being
the above mentioned scores 2[1, 10], the resulting
RPNi values 2[1, 1000]. On the other hand, being the
Si, Oi and Di-scale values from the dP-FMEA
approach 2[0, 10], the resulting RPNi values 2[0,
1000]. Despite this slight discrepancy, it is possible to
make a quantitative comparison between the results
deriving from the two approaches, as illustrated by
the graphs in Figure 8.

Precisely, there is a strong correlation between the
data resulting from the two approaches; see respect-
ively the graphs in Figure 8(a), (b) and (c) (R2 deter-
mination coefficients very close to 90%). An
analogous correlation between the corresponding
RPNi values can be observed, denoting a sort of
“convergent validity” between the new dP-FMEA
approach and that of the traditional P-FMEA, keeping
in mind the major practical advantages of the former
with respect to the latter (Hair et al. 2017).

Conclusions

This paper illustrated the innovative dP-FMEA
approach, which can be applied to distributed manu-
facturing environments. This approach is potentially
more suitable than the traditional P-FMEA, for several
practical reasons:

� The procedure allows to manage dozens of experts,
without requiring them to physically meet and
make collective decisions. In addition, the proced-
ure considers the precious contribution of all the
experts – concept of “wisdom of crowds” (Cai
et al. 2017) – even the younger/weaker ones, who
are not infrequently inhibited in the traditional P-
FMEA group sessions (Geramian et al. 2019a).

� The method includes a flexible response mode,
which does not force experts to make detailed
judgments, even in case of hesitation.

Figure 8. Qualitative comparison between the results of the new dP-FMEA and the traditional P-FMEA, with reference to the
case study. The comparison is made in terms of (a) Si, (b) Oi, (c) Di, and (d) RPNi -values. In all cases there is a strong correlation
(R2 values very close to 90%).
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� Unlike the traditional P-FMEA and other variants
in the scientific literature, the proposed procedure
provides an estimation of the uncertainty of the
results obtained (Franceschini and Galetto 2001;
Das Adhikary et al. 2014; Liu et al. 2018, 2019b; Li
et al. 2019). This aspect is far from being insignifi-
cant since it gives the expert team more freedom
in planning possible corrective actions.

� The methodology can be easily implemented using
an ad hoc software application developed by the
authors (in MS Excel – VBA environment), which
is available on request.

� The proposed methodology allows to overcome
some widely debated shortcomings of the trad-
itional P-FMEA, such as:

1. It does not require the use of arbitrary ref-
erence tables for the assignment of S, O
and D scores (e.g., those exemplified in
Table 1);

2. It does not introduce any unduly “promotion”
of the scales on which expert judgments are
defined (Franceschini et al. 2019).

Although there is no absolute reference (“gold
standard”) to evaluate the validity of the proposed
procedure, a preliminary comparison with the
traditional P-FMEA procedure shows a certain agree-
ment between the results obtained (concept of
“convergent validity”). It should also be noted that the
ZMII-technique – which is used in the first phase of
the proposed procedure – is a widely validated and
consolidated that is strictly related to the traditional
LCJ (Thurstone 1927; Edwards 1957; Gulliksen 1956;
Franceschini and Maisano 2019). This constitutes
a certain guarantee of the soundness of the
results provided.

The proposed procedure has some limitations:

� The way of determining the RPNi values is
more laborious than for the traditional
P-FMEA.

� The proposed response mode, although being flex-
ible, represents a novelty with respect to the trad-
itional one, which is based on the use of reference
tables. This could create some problems, especially
for more experienced users that are accustomed to
the traditional procedure.

Regarding the future, we plan to develop a variant
of the dP-FMEA approach, in which experts are not
equally important, but are characterized by a hier-
archy of importance.
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Appendix

Detailed description of the ZMII-technique
This section provides a detailed description of the ZMII-
technique and is organized into three sub-sections, which
respectively illustrate (i) the mathematical formulation of
the decision-making problem of interest, (ii) the determin-
ation of an initial scaling, and (iii) the “transformation” of
this initial scaling into a ratio scaling, with relevant uncer-
tainty estimation.
Mathematical formulation of the problem
The mathematical formalization of the problem relies on
the postulates and simplifying assumptions of the Law of
Comparative Judgment (LCJ) by Thurstone. Precisely,
Thurstone (1927) postulated the existence of a psycho-
logical continuum, i.e. an abstract and unknown unidimen-
sional scale, in which objects are positioned depending on
the degree of a certain attribute – i.e. a specific feature of
the objects, which evokes a subjective response in each
expert. In the context of P-FMEA, possible attributes are
the severity, occurrence and detection of the failure
modes (objects).

The position of a generic i-th object is postulated to be
distributed normally, in order to reflect the intrinsic expert-
to-expert variability: fi � N(xi, r2xi), where xi and r2xi are the
unknown mean value and variance related to the degree of
the attribute of that object. Considering two generic objects,
fi and fj, it can therefore be asserted that:

fi � fj � Nðxi � xj, r
2
xi þ r2yi � 2 � qxixj � rxi � ryiÞ (A.1)

where qxixj is the Pearson coefficient, denoting the correl-
ation between the positions of objects fi and fj (Ross 2014).
The probability that the position of fi is higher than that of
fj can be expressed as:

pij ¼ P½ðfi � fjÞ > 0�

¼ 1� U
0� ðxi � xjÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2xi þ r2xj � 2 � qxixj � rxi � rxj
q

2
4

3
5, (A.2)

U being the cumulative distribution function of the stand-
ard normal distribution z � N(0, 1).

The LCJ (case V) includes the following additional sim-
plifying assumptions (Thurstone 1927; Edwards 1957): r2xi¼ r2 8i, qxixj ¼ q, 8i, j, and 2 � r2 � ð1� qÞ ¼ 1: Eq. [A.2]
can therefore be expressed as:

pij ¼ 1 –U½�ðxi–xjÞ�: (A.3)

Although pij is unknown, it can be estimated using the
information contained in a set of (subjective) judgments by
a number (m) of experts (e1, e2, … ) (Thurstone 1927). In
fact, experts formulate rankings of the objects, which can be
decomposed into paired-comparison relationships of strict
dominance (e.g., “fi > fj” or “fi < fj”), indifference (e.g.,
“f1 � f2”) or incomparability (e.g., “f1 jj f2”) (Franceschini and
Maisano 2019). For the purpose of example, the four-object
ranking “(f1 jj f2) > (f3 � f4)” can be decomposed into the fol-
lowing C4

2 ¼ 6 paired-comparison relationships: “f1 jj f2”, “f1 >
f3”, “f1 > f4”, “f2 > f3”, “f2 > f4”, and “f3 � f4”.

Then, for each expert for which fi > fj, a frequency indi-
cator kij is incremented by one unit. In the case the two
objects are considered indifferent, kij is conventionally
incremented by 0.5, so that:

kij ¼ mij– kji, (A.4)

mij being the total number of experts from which it is pos-
sible to obtain a relationship of strict dominance or indiffer-
ence for the i,j-th paired comparison. These two types of
relationships are called “usable” because they can contribute
to the pij estimation, as shown below. In general, mij � m
since for some experts it is possible to obtain only a rela-
tionship of incomparability.

The observed proportion of experts for which the degree
of the attribute of fi is higher than that of fj can be used to
estimate the unknown probability pij:

p̂ij ¼
kij
mij

: (A.5)

Of course, the relationship of complementarity p̂ij ¼
1� p̂ji holds.

Returning to Eq. [A.3], it can be expressed as:

p̂ij ¼ 1 –U½�ðxi–xjÞ�, (A.6)

from which:

xi–xj ¼ � U�1ð1 –p̂ijÞ, (A.7)

It can be noticed that, if all experts express the same
judgment, the model is no more viable: p̂ij values of 1.00
and 0.00 would correspond to -U�1ð1� p̂ijÞ values of 61:
A simplified approach for tackling this problem is to associ-
ate values of p̂ij	 0.977 with -U�1(1� 0.977) ¼ 1.995 and
values of p̂ij� 0.023 with -U�1(1� 0.023) ¼ �1.995. More
sophisticated solutions to deal with this issue have been
proposed (Edwards 1957).

Extending the reasoning to all possible paired compari-
sons for which mij 	 1 (i.e., for at least one expert, there is
a usable paired-comparison relationship), the relevant p̂ij
values can be determined, and the following system of
equations can be constructed:
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..

.

xi � xj þ U�1ð1� p̂ijÞ ¼ 0 8i, j:mij 	 1

..

.
:

8>><
>>: (A.8)

Since, the rank of the system is lower than the number
(n) of unknowns of the problem (i.e., xi 8i) – and the
system itself would be indeterminate – the following con-
ventional condition was introduced by Thurstone (1927):X

i

xi ¼ 0: (A.9)

Equations [A.8] and [A.9] are then aggregated into a
new system, which is over-determined (i.e., it has rank n
while the total number of equations (q) is higher than n)
and linear with respect to the unknowns:

" ..
.

xi � xj þ U�1ð1� p̂ijÞ ¼ 0 8i, j : mij 	 1

..

.X
i

xi ¼ 0

:

8>>>>>>><
>>>>>>>:

(A.10)

This system can be expressed in matrix form as:

..

.

Xn
k¼1

ðahk � xkÞ � bh ¼ 0

..

.

8h 2 ½0, q� ) A � X � B ¼ 0,

8>>>><
>>>>:

(A.11)

X ¼ [… , xi, … ]T 2 Rn
1 being the column vector con-
taining the unknowns of the problem, ahk being a generic
element of matrix A2 Rq
n, and bh being a generic element
of vector B2 Rn
1: For details on the construction of A and
B, see (Gulliksen 1956).

The next subsection illustrates the proposed solution to
the problem of interest.

Initial scaling
In general, the system in Eq. [A.11] will not necessarily be
complete, as the number of equations (q) could be lower
than Cn

2 þ 1 (i.e., for any paired comparison with mij ¼ 0,
no equation can be formulated). In a recent article,
Franceschini and Maisano (2019) proposed to solve this
“potentially incomplete” system through the Generalized
Least Squares (GLS) method (Karya and Kurata; Ross 2014).
From a technical point of view, the GLS method allows to
obtain a solution that minimizes the weighted sum of the
squared residuals of the equations in Eq. [A.11], i.e.:

Xq
h¼1

wh �
Xn
k¼1

ðahk � xkÞ � bh

" #2

, (A.12)

in which weights (wh) take into account the uncertainty in
the p̂ij values. It can be demonstrated that, for a generic
equation related to a generic paired comparison (fi, fj):

wh ¼
@U�1ð1� p̂ijÞ

@p̂ij

" #2,
r2pij (A.13)

.

Next, weights are aggregated into a (squared) matrix W 2
Rðq�1Þ
ðq�1Þ, which encapsulates the uncertainty related to
the equations of the system. A practical way to define W is
to apply the Multivariate Law of Propagation of Uncertainty
(MLPU) to the system in Eq. [A.11], referring to the input
variables affected by uncertainty (Kariya and Kurata 2004);
these variables – which, focusing on the problem of interest,
are essentially the p̂ij values, 8i, j:mij 	 1 – can be collected
in a column vector n ¼ [… ,p̂ij, … ]T 2 Rðq�1Þ
1: Precisely,
W can be determined propagating the uncertainty of the
elements in n to the equations of the system:

W ¼
h
Jn �

X
n
� JTn

i�1
, (A.14)

where Jn is the Jacobian matrix containing the partial deriv-
atives of the first members of Eq. [A.11], with respect to the
elements in n, and Rn is the covariance matrix of n.

By applying the GLS method to the system in Eq.
[A.11], a final estimate of X can be obtained as (Kariya and
Kurata 2004):

X̂ ¼ðAT �W � AÞ�1 � AT �W � B: (A.15)

The uncertainty of the solution can be estimated through
a covariance matrix RX, which can be obtained by propagat-
ing the uncertainty of input data (i.e., p̂ij values), through
the following relationship:X

X
¼ ðAT �W � AÞ�1 (A.16)

On the other hand, the partial derivatives in the
Jacobian matrix Jn2 Rðq�1Þ
ðq�1Þ Z can be determined in a
closed form, by approximating terms U�1(1 –p̂ij) (see Eq.
[A.10]) through the following formula (Aludaat and
Alodat 2008):

U�1ð1� p̂ijÞ � k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� ln½1� ð1� 2 � p̂ijÞ2�ffiffiffiffiffiffiffiffi

p=8
p

vuut
(

0 � p̂ij � 0:5 ! k ¼ 1

0:5 < p̂ij � 1 ! k ¼ �1
,

(A.17)

from which:

@½U�1ð1� p̂ijÞ�
@p̂ij

�
�����

ffiffiffi
2

p �ð2 � p̂ij�1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � ffiffiffiffiffiffiffiffi

2 �pp � lnð�4 � p̂2ijþ4 � p̂ijÞ
q

� p̂ij �ð1� p̂ijÞ

�����for p̂ij 6¼0:5

@½U�1ð1� p̂ijÞ�
@p̂ij

�2:506628 for p̂ij¼0:5:

(A.18)

The matrix Rn 2 Rðq�1Þ
ðq�1Þ Z diagonally contains the var-
iances related to the input variables, i.e. p̂ij terms. Let us
now make a brief digression to derive the expression of
these variances. Since fij is determined considering a sample
of mij paired comparisons, it will be distributed binomially;
p̂ij is the best estimator of pij, according to the information
available. In formal terms:
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fij � B½lfij , r2fij � � B½mij � p̂ij,mij � p̂ij � ð1� p̂ijÞ�: (A.19)

In the hypothesis that mij � p̂ij 	 5 when 0 � p̂ij � 0:5,
or mij � ð1� p̂ijÞ 	 5 when 0:5 < p̂ij � 1, the following
approximations can be reasonably introduced (Ross 2014):

fij � N½lfij , r2fij � � N½mij � p̂ij,mij � p̂ij � ð1� p̂ijÞ�

pij � N½lpij , r2pij � � N p̂ij,
p̂ij � ð1� p̂ijÞ

mij

" #
: (A.20)

It can be noticed that, even when all experts express
their usable judgments for all the possible paired compari-
sons (i.e., mij ¼ m8i, j), the variance of pij may change from
one paired comparison to one other, as it also depends on
the relevant p̂ij value.

The variances of the p̂ij values will therefore be:

r2pij ¼
p̂ij � ð1� p̂ijÞ

mij
: (A.21)

The relevant covariances can be neglected, upon the rea-
sonable assumption that the estimates of different pij values
are (statistically) independent from each other. Next, it is
possible to determine the matrix W (Eq. [A.14]) and, subse-
quently, X̂ (Eq. [A.15]) with the relevant uncertainty (Eq.
[A.16]). This solution is defined on an interval scale (x), i.e.
objects are defined on a scale with meaningful distance but
arbitrary zero point (Thurstone 1927; Roberts 1979;
Franceschini et al. 2019). The following subsection introdu-
ces a transformation that allows to “promote” this scaling to
a more powerful one.

Transformation of the initial scaling into the
final one
Through the following transformation, the resulting scaling
(x) is transformed into a new one (y), which is defined in
the conventional range [0, 10]:

ŷi ¼ ŷiðX̂Þ ¼ 10 � x̂i � x̂Z
x̂M � x̂Z

8i, (A.22)

where: x̂Z and x̂M are the scale values of fZ and fM, resulting
from the GLS application; x̂i is the scale value of a generic
i-th object (regular or dummy), resulting from the GLS
application; ŷi is the scale value of a generic i-th object in
the new scale y. This transformation can also be expressed
in vector form as:

Ŷ ¼Ŷ ðX̂Þ ¼ ½:::, ŷiðX̂Þ, :::�T ¼ :::, 10 � x̂i � x̂Z
x̂M � x̂Z

, :::

� �T
,

(A.23)

being Y a column vector whose components result from a
system of n decoupled equations. Since scale y “inherits”
the interval property from scale x and has a conventional
zero point that corresponds to the absence of the attribute
(i.e., ŷZ), it can be reasonably considered as a ratio scale,
without any conceptually prohibited “promotion”. We note
that the two dummy objects, fZ and fM, are used to
“anchor” the x scale to the y scale (Paruolo, Saisana and
Saltelli 2013).

Combining Eqs. [A.23] and [A.15], the final (ratio) scal-
ing Y can be also expressed as:

Ŷ ¼Ŷ ½X̂ � ¼ Ŷ ½ðAT �W � AÞ�1 � AT �W � B�: (A.24)

Next, the uncertainty related to the elements in
Ŷ ¼½:::, ŷi , :::�T 2 Rn
1 can be determined by applying the
delta method to Eq. [A.24] (JCGM100:2008 2008). It is thus
obtained:

RY ¼ JYðX̂Þ � RX � JTYðX̂Þ, (A.25)

where JYðX̂Þ 2 Rn
n is a Jacobian matrix containing the par-
tial derivatives related to the equations of the system in Eq.
[A.23], with respect to the elements of X: In the hypothesis
that the n (regular and dummy) objects are ordered as (fZ,
fM, f1, f2, f3, … ) and therefore X̂ ¼½x̂Z , x̂M , x̂1, x̂2, x̂3, :::�T
and Ŷ ¼½ŷZ , ŷM , ŷ1, ŷ2, ŷ3, :::�T , JYðX̂Þ would be:

JYðX̂Þ¼

@yZ
@xZ

@yZ
@xM

@yZ
@x1

��� @yZ
@xi

���
@yM
@xZ

@yM
@xM

@yM
@x1

��� @yM
@xi

���
@y1
@xZ

@y1
@xM

@y1
@x1

��� @y1
@xi

���

..

. ..
. ..

. . .
. ..

. ..
.

@yi
@xZ

@yi
@xM

@yi
@x1

��� @yi
@xi

���

..

. ..
. ..

. ��� ..
. . .

.

2
6666666666666666664

3
7777777777777777775

¼

10
x̂M� x̂Z

0 0 ��� 0 ���

0
�10

x̂M� x̂Z
0 ��� 0 ���

�10� ðx̂M� x̂1Þ
ðx̂Z� x̂MÞ2

10� x̂Z� x̂1
ðx̂M� x̂ZÞ2

�10
x̂M� x̂Z

��� 0 ���

..

. ..
. ..

. . .
. ..

. ..
.

�10� ðx̂M� x̂iÞ
ðx̂Z� x̂MÞ2

10� x̂Z� x̂i
ðx̂M� x̂ZÞ2

0 ��� �10
x̂M� x̂Z

���

..

. ..
. ..

. ��� ..
. . .

.

2
66666666666666666664

3
77777777777777777775

:

(A.26)

Combining Eqs. [A.25] and [A.16], RY can be expressed
as:

RY ¼ JYðX̂Þ � ½ðAT �W � AÞ�1� � JTYðX̂Þ: (A.27)

Assuming that the pij and ŷi values are approximately
normally distributed, a 95% confidence interval related to
each ŷi value can be computed as:

ŷi6Uyi ¼ ŷi62 � ryi8i: (A.28)

Uyi being the so-called expanded uncertainty of ŷi with a
coverage factor k¼ 2 and ryi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
RY, ði, iÞ

p
(JCGM

100:2008 2008).

Weighted additive aggregation model
The fact that the values of Si, Oi and Di, are defined on
three separate ratio scales entails that their aggregation
through the multiplicative model in Eq. [3] is meaningful
(Roberts 1979; Franceschini et al. 2019). Although we are
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aware of the presumed advantages of multiplicative models
with respect to the additive ones, below we propose an
alternative weighted additive model:

RPN0
i ¼ wS � Si þ wO � Oi þ wD � Di, (A.29)

in which:wS, wO and wD are the percentage weights assigned
to the three risk factors of interest (conventionally wS þ wO

þ wD ¼ 100%) and RPN’i is the resulting composite indica-
tor; the prime symbol “(‘)” was introduced to distinguish
this composite indicator from the one in Eq. [3].
Additionally, while RPNi 2 ½0, 1000�, RPN0

i 2 ½0, 10�:
The model in Eq. [A.29] can be preferred to the one in

Eq. [3], for the following reasons:

� It allows the P-FMEA team leader to choose the (strat-
egy) weights (wS, wO and wD) of the three risk factors of
interest. For example, for manufacturing processes that
are potentially hazardous to personnel safety, it may be
appropriate to raise wS. On the other hand, for processes
with high throughput and high level of automation, it
may be appropriate (i) to raise wO, with the purpose of
reducing the so-called mean time between failures
(MTBF), and/or (ii) to raise wD, with the purpose of
reducing the so-called mean time to failure (MTTF)
(O’Connor and Kleyner 2012). Of course, the choice of
weights should be made according to the strategic objec-
tives of the process. The scientific literature contains a
variety of techniques to drive this operation (Vora,
Paunwala, and Paunwala 2014; Wang, Liang and Qian
2015).39The comparability between Si, Oi, and Di is
ensured by the fact that these indicators are defined on
ratio scales with comparable zero and a conventional
range [0, 10].

� Although weights could theoretically be introduced into
the multiplicative model in Eq. [3], e.g. by changing it
into:

RPN00
i ¼ ðSiÞwS � ðOiÞwO � ðDiÞwD , (A.30)

we think that it would be relatively difficult to control
their influence on the final result. For example, the
use of multiplicative models (weighted or not) could

make the substitution rate of sub-indicators change
unpredictably (Franceschini et al. 2019).

� The model in Eq. [A.29] allows to visualize the contribu-
tions of the three risk factors of interest. For example
the chart in Figure A1 shows the RPN’i values and rele-
vant contributions for the case study. In this case, the P-
FMEA team leader set the following weight combin-
ation: wS ¼ 40%, wO ¼ 30% and wD ¼ 30%.

Similar to what explained in the section “Uncertainty
calculation” for the RPNi values, the uncertainty related
to the RPN’i values can be determined by applying the
delta method to Eq. [A.29] (JCGM 100:2008 2008),
obtaining:

rRPN0
i
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2
S � r2Si þ w2

O � r2Oi
þ w2

D � r2Di

q
: (A.31)

Weights (wS, wO and wD) are implicitly treated as con-
stants, neglecting the correlations between the Si, Oi and
Di values.

Assuming that the RPN0
i values are approximately nor-

mally distributed, a 95% confidence interval related to each
RPN0

i value can be computed as:

RPN0
i6URPN0

i
¼ RPN0

i62 � rRPN0
i
8i, (A.32)

URPN0
i
being the so-called expanded uncertainty (JCGM

100:2008 2008) of RPN0
i with a coverage factor k¼ 2.

Table A1 contain the results concerned with the
case study.

Again, we note that the uncertainty bands of several fail-
ure modes are superimposed (see Figure A1). Despite the
structural differences between the model in Eq. [A.29] and
that in Eq. [3], the corresponding results are not so dissimi-
lar: the most critical failure modes are f5 and f8, while the
least critical ones are f7 and f11. Unlike the model in Eq.
[3], we note that the dispersion of the RPN0

i values is rather
homogeneous (i.e., the standard deviations are comparable),
indicating a certain homoschedasticity (Ross 2014) (see
Figure A1).

Returning to the model in Eq. [A.29], we emphasize that
the choice of weights (wS, wO and wD) is arbitrary. In such

Figure A1. Pareto chart of the failure modes based on their RPN’i values (see Eq. [A.29]). In addition to expanded-uncertainty
bands, this chart allows to visualize the contributions related to Si, Oi and Di (numerical data in Table A1).
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a scenario, it may be appropriate to evaluate the robustness
of the results with respect to (small) variations in these
weights, through a sensitivity analysis. For example, the pos-
sible variations in the case-study results can be analyzed for
three different weight combinations, as shown in Figure A1:
(1) wS ¼ 40%, wO ¼ 30% and wD ¼ 30%, (2) wS ¼ 33.3%,

wO ¼ 33.3% and wD ¼ 33.3%, and (3) wS ¼ 50%, wO ¼
20% and wD ¼ 30%.

Since the RPN0
i values of the failure modes do not seem

to change considerably as the weights vary, the solution
provided by the (weighted) additive model in Eq. [A.29]
appears robust for this case study.

Table A1. Results of the application of the weighted additive model of Eq. [A.29] to the case study.
Si values Oi values Di values Additive contributions RPN0

i values

Mean St.dev. Mean St.dev. Mean St.dev. wS·Si wO·Oi wD·Di Mean St.dev. URPN0
i

f1 7.69 0.51 2.03 0.60 3.01 0.55 2.32 2.42 1.24 5.98 0.31 0.62
f2 6.91 0.51 2.23 0.58 5.19 0.51 2.03 2.08 1.66 5.77 0.31 0.62
f3 4.88 0.52 2.69 0.55 7.46 0.55 1.95 0.81 2.24 5.00 0.31 0.62
f4 5.60 0.53 4.14 0.51 4.48 0.52 2.76 0.67 1.56 4.99 0.31 0.62
f5 5.80 0.52 8.06 0.56 4.14 0.54 2.38 1.28 1.27 4.93 0.31 0.62
f6 2.71 0.61 4.57 0.52 4.82 0.51 2.24 1.24 1.34 4.83 0.30 0.60
f7 3.76 0.54 4.05 0.54 3.05 0.56 3.08 0.61 0.90 4.59 0.32 0.64
f8 5.08 0.54 6.93 0.56 5.54 0.52 1.34 1.72 1.21 4.27 0.31 0.62
f9 5.96 0.52 4.26 0.54 4.23 0.51 1.08 1.37 1.44 3.90 0.33 0.66
f10 3.36 0.55 5.74 0.52 4.03 0.53 1.51 1.21 0.91 3.63 0.32 0.64
f11 2.09 0.66 5.27 0.52 3.29 0.55 0.84 1.58 0.99 3.41 0.35 0.70

In case, weights are conventionally set to wS ¼ 40%, wO ¼ 30%, and wD ¼ 30%.

Figure A2. Sensitivity analysis of possible variations in results for three different weight combinations. Failure modes are sorted in
descending order with respect to the corresponding RPN0

i values, for the first weight combination.
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